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GENERAL THEORY OF SANDWICH PLATES WITH
DISSIMILAR FACINGS

G. A. WEMPNER

Department of Engineering Mechanics, University of Alabama, Huntsville

J. L. BAYLOR
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Abstract—Equations are derived for the large deflections of sandwich plates with weak cores and presented
in an invariant form. The general equations include the bending resistance of the facings and transverse exten-
sion of the core. Equations for buckling and for small deflections are obtained as special cases. An example
illustrates the use of these equations to predict buckling loads.

NOTATION

The usual suffix notations are used. Latin suffixes represent the numbers 1, 2 and 3,
while Greek suffixes represent only 1 and 2. Repeated suffixes imply summation unless
enclosed by parentheses.

Since there is no need to denote covariant differentiation with respect to the three
dimensional space, the vertical line ( |) is used here to denote covariant differentiation
with respect to the undeformed middle surface. A comma (,) denotes partial differentiation.

A prefix n = 0 or 1 refers to the upper or lower facing; the prefix is underlined to
avoid confusion with a suffix. Upper and lower signs, e.g. +, apply accordingly as the
prefix n = 0 or 1, respectively.

Where a distinction is necessary, capital letters refer to the deformed plate while
lower-case letters refer to the undeformed plate.

Essentially new variables are defined where they arise. Others are listed below.

L a characteristic length of the middle surface
d thickness of the core
oA thickness of a facing (n = 0 or 1)
. = d/2L
p = 24 g4/24 (42
o = ,d/L
. =i~ 4
o dimensionless surface coordinate
6? = = x? = length along the normal to the middle surface
/
4, (or ;1\1] = 1_1\»,; the position vector is LR
a3 {or 43) =R,
ay _d.a
a = determinant |a,,|
= J(@e,;; e,; = permutation symbol

£
S

A% = unit tangent to the edge
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= i,A* = unit normal to the edge in the surface
= metric tensor associated with §*
= determinant |g; |

1 - - R
= P(!pgA,g+,_,p§A3), external force per unit area
= \/(a)(ﬂn“l,A,+L,q,,A3) force resultant per unit of the 6 coordinate line (f # x)
= \/(a)st,_,m“xA”, resultant couple per unit of the 8% coordinate line (§ # «)
= ,ud’, interface displacement
= 2w, relative displacement of the interfaces
= 2w, average displacement of the interfaces
= oI’ + 1P
= oP "117
1.

=P =y

- ’y -
= gAoP” 4P
= Mohop" + 14,0%)
= on*+ n*

1
= /l( n“"—A‘,n“”)
¥
= gm* + m*
= (Om"”— m*y
= o+ 14 :m‘“| +¢*
= Aoq” _1‘11) = mla* +c*

(W3t w3)ap

oBap+1Bap)
= 2 OBazﬂ aﬂ)
strain of an interface
strain of the middle surface of a facing
= {oVsp +71T1g)
stress tensor
AL [*1
=4 e ae?
\/ ad-1

;3
= 7(\/ 0a)g7* + (1)t

an invariant stress function; cf. equation (16)
see equation (17)

A~:t-~

(t—n _I*
e
2LAgAgu

.
ﬁLB( + +v'“,)—
P +5c7, o 7

an invariant ‘stress function'

=

see equation (24c)

+3¢f

4/ otolty
= L[ +4¢* ~»('3
Pl e+
3(1—11)G,12 +( mne 1+«
ATy ANghen Ahghopt ¥
_ 31-nP6U+y)
T2LH( A 7y AN AR gy
 digign ( y )
T (I-nG\1
physical (not tensorial) components of edge forces
physical (not tensorial) components of edge couples
edge shear force on the core

physical {not tensorial) components of edge displacements
Poisson’s ratio of both facings
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o shear modulus of a facing
JE Young’s modulus of a facing
G transverse shear modulus of an orthotropic core
G transverse shear modulus of an isotropic core
E Young's modulus for transverse extension of core
Bepm stiffness tensor; cf. equation (20b)
Copm flexibility tensor; cf. equation (20a)
Cy shear flexibility tensor of core; cf, equation (2¢)
v = ﬂ
ool

INTRODUCTION

MUuUCH attention has been directed to the behavior of sandwich plates. Notable con-
tributions to the theory were made by Reissner [1, 2, 3], Libove and Batdorf [4], Wang
[5] and Yu {6]. Numerous others have dealt with the stability of sandwich plates, but
much of the work does not account for the bending resistance of the individual facing.
Equations which include the bending stiffness of the facings were given by Grigolyuk [7]
and elaborated by Fulton [8]. They do not include the transverse extensibility of the core.
Equations for rectangular plates with equal facings were given by Prusakov [9].

In a previous paper [10] the authors presented a general theory of sandwich shells
with weak cores. The basic theory of that paper is applicable to sandwich plates. However,
the formulation of the earlier work is not well suited to the analysis of plates with dis-
similar facings. Moreover, the specialization from a curved surface to a plane simplifies
the equations and enables us to introduce invariant functions which reduce the number
of dependent variables and differential equations. Here we present a general formulation
which includes dissimilarities in the facings and the important geometrical non-linearities.
The equations are developed from a unified point of view with few approximations; the
important approximations are (1) the neglect of membrane and bending stresses in the
core and (2) the Kirchhoff hypothesis in the facings. The geometrical nonlinearities are
comparable to those of the von Karman theory of one-layer plates. Orthotropy of the
core and facings is taken into account. The nonlinear formulation is expressed by five
partial differential equations or two if the plate is isotropic and also transversely in-
extensible. Equations for small deflections and equations for buckling are obtained as
special cases.

The equations are applled to the buckling of plates with unequal facings.

SOME BASIC EQUATIONS

We begin by citing the basic results from the earlier paper [10] Notations have previ-
ously been described.
The stress distributions in the core are

o

3a s
= 2,214 (1a)
33
33 l Sla g3, g (1b)

et T

wherein §* and ¢33 are a transverse shear resultant and mean normal stress.
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The core behavior is described by relating the relative interface displacements w; (o
the dynamic variables §* and ¢*3. The relations are

af
L 4, «

Wy — iEG - ‘i;{i‘?a_}}z(byﬁ 23)
C 2
P T Be G
W, = ~mt3|,+~7~;~s" - 67171:375%1' (2h)
If the core is orthotropic J
_ Tap .
CaB = a;) (ZL]

G* and E are the transverse shear and extension moduli, w; is the mean of the interface
displacements and &,, is a gross rotation,

- AL _ L

W3, = —*2‘\4’3[1—5\’\’1.

In the quadratic term of (2a) the transverse shear strain is assumed small compared to
the rotation @s,; then it is consistent to use the approximation w, = — Ai¥;|, to obtain
Dy, = ALW;, (2d)

It is worth noting that {1a, b) and (2a, b) are exact within the limitations of linear theory
and the weak-core hypothesis (1% = 0).
The second fundamental tensor of the deformed interface is

[
r_rBa[f = Z(wsiws)lqﬁ- (3a)
The strain components at the interfaces are given by

L .
wiap = E‘(W’alﬁ + ﬁ’ﬂ‘a W,y Wl + %(Ws‘a + “’3|a)(‘7'3!;1 +wilp). {3b)

Here as elsewhere the products of rotations about a normal are neglected (see [10]). In
accordance with the Kirchhoff hypothesis the strain components at the middle surface
of a facing are given by
. Li
niap = alapt 'i;*r_:Bx/r (3¢)

If the facings are linearly elastic and similar

i N
af of appsa
f f= LA‘*B /lyw'»*

where ,u is an elastic constant for the facing. Then the tensions and bending couples
are related to the strain and curvature components by

r_'ila/} = r_u).r_v/‘me'J./‘nr o
~3 p)
Pl
01111“ = —L<17“’!'HBMWLIBW?' .

These forces and couples act at the middle surface of the facing.
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When the shear resultants have been eliminated, the equations of motion for a facing
are

3_!_'1i a ! 1 '.';“ i —LZ 33 ap b B 0 .
aP ’Enp |z+§ +§; s |0+5/~j0 +am |aﬂ+un nPag = Y (5a)
PR R iy /1 N
IFL BT 0 §+ 1= Br®ly = 0. (5b)
2° h 2 2 /\vav\
ANAAN

These equations are exact and applicable to dynamic situations when the load components
Lo include the inertial loads. The underlined terms of (5b) can be neglected; then it
reduces to

1
DPE =5+ 0, = 0. (6a)
- 2/ -

A COMPATIBILITY CONDITION

The Gauss equation of the undeformed and deformed middle surfaces of a facing
are (see [11])

1 bt — P
e g, =0 (7a)

and

A
—.K, (7b)

1 aBam —
e rngﬂm_ a®

where 7., and ,R.g, are the Riemann-Christoffel tensors of the respective surfaces
and ,K is the Gaussian curvature of the deformed surface. If (7a) is subtracted from
(7b) and products of the strain components are neglected, the result is

LZ
paf o7 o —_ 72 — V70 —
ePey lp. = L2, K = 5 *¢",B ., Bgs. (8)
We define a weighted strain component,
Af—yaﬁ = anﬂ+yl_ﬂ/“aﬁ (9)
wherein
LA
T= (10)
0% oH

To obtain the desired compatibility equation we multiply o(8) by gigtt, 1(8) by 40
then add them, use (3a). and obtain ' 7 o
o) olté Weidg ‘ﬂ = 79 2B [(0;~Qll+ 1_;-1_/“)-(‘T’a\wﬂ‘s\[fa*“’3‘1«;“’3‘;15)‘*’

. B B (11)
+ oAl — LAU(F 3|y Wslps + W3l 3l gs)] = F (T3, wy).

EQUILIBRIUM CONDITIONS

Instead of the equilibrium equations (6) we form linear combinations as follows:
The sum of y(6a) and ((6a) is

pf+ |, = 0, (12a)
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where bars (7) denote a sum (see Notation). Next we divide 4(6a) by gigu. ,(6a) by (4,1t
and subtract the latter from the former. The result is i o o

1+ .
ﬁﬂf‘a._ —2—L§B+Ap’3 =0 (12b)
q/y

wherein

By adding 4(5a) and ,(5a) we obtain

53 4 A g L 7 pets 1=y 2y
3 LB _AB af aﬁB ap - _
p +2/15 |ﬂ+2C |p +7m g + 78 uB+—~1+7n Ba,}+/1——~——(1+y)n B,; = 0. (12¢)

Herein

Z = 2/{+%0/‘L+%1/1,

_ g i
B, = Ew3laﬂ’ B, = ZW3|a/3- (13a,b)

By subtracting ,(5a) from o(5a) we have

A
Ap? + 5P|+ ZS”L,— L?6% +m™| 5+

2y _ I—y_ .-
i**B i—Ah B, = 0. 1
1+yn ""’+Al+yn B+ =0 (12d)

BENDING AND STRETCHING RELATIONS

From (4a, b) we obtain

Aol - , _ )
m = —();~1(-)‘—2u—~B“"””l[(q/v2 + 9 A5+ (A% — 71 A% IWs)pal, (14a)
AoAL -
R e G (VWL UM REN VAR S LA (14b)
i = gAguB¥?5,;, (14¢)

At = QAQ“ALBW?”(WAM{‘ Wn'v" = ) - ~W3|M—
(14d)

A 1, 1
~§W31yn+iw3|vw3‘n+zw3le3|n .

We can also replace the relative interface displacements w, by the relative middle-surface
displacements

OA+1_/,W , A (15)
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Then (14d) is replaced by

fopiL = 2 2
ﬁaﬁ = ﬁggf—B”W(aylg*'O‘q{y+zw31y@3ln+Z‘Z’3i*fw31rx)' (146)

THE STRESS FUNCTION
The equilibrium equation (12a) is identically satisfied if
7t = gmeghg|, — F*, {16)
where F** is a symmetric particular integral of
F), = p’. (17)

However 7% must derive from continuous displacements W, in accordance with (14c),
(9) and (3). That is J,; must satisfy the compatibility condition (11) and

1
p)-)a = Ca " (18)
B Q'lgll Byn

is the flexibility tensor, ie.

Ca‘gp)’épl?n = Caﬁpié}’f’ml = 5353.

in which C

afiyn

In the sequel we will assume homogeneity so that C’a,,y,,|u = (). Substituting (16) into (18)
into (11) we obtain

&PV b cupy — €07 C ey F gy = F (W3, ). (19a)

If the facings are isotropic

N 1 7
Cuspn = 3 <aaca5n - m agr,aaa>- (20a)

Then (19a) takes the form
P8+ (1 +me e F ol p, +nFYl = — 21+ F (W3, ws). (19b)

THE NONLINEAR DIFFERENTIAL EQUATIONS

The core relation (2a) serves to eliminate the variable ¢3? from (12d). The core relations
(2b) serve to eliminate the relative displacements w, (or «,) from (14d); the result is

nt = QAQ”ABMW <_2Lw3|vn + CWS“I,,
At AL o
_3:575 ‘um—7w3lw+w3¥yw3[v+w3‘>fw31vt . (21a)

When (21a), (14a, b}, (16) and (13a, b) are substituted into (12b, c, d), the latter together
with (19a) constitute a system of five partial differential equations in the five dependent
variables §% ¢, w; and wj.
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If the plate is isotropic,

BB = q#gby 4 g7 gbn + Tg—n—a“ﬂa”’ (20b)
and

Ca[! = uaﬁ/G.

(21b)

+2<w3]""w3]”+] . na“"wg,l"%[,,)
+ 2(W3l“w3]ﬁ +£;a“”w3|ﬂw3|nﬂ .

When (21b) is substituted into (12b), the latter is then covariantly differentiated and
summed, the result is

1 o | 2 ¥ 3 afs
—2ALw, [+ ——'s Pl —= 3E [ft},,—/,Lw'3[a§
(I=m+7). o (1 n)~,,
— b ar
20A0,u/ vt o/ u o (22a)

+4(1 —’7)(W3| "“3!’3)'111; +4’1(W3"’W3|n)|; = 0.

Notice that equation (22) contains §* only in the invariant §%,, but that §* will appear in
a nonlinear term of (12¢) and (12d). However, if the relative transverse extension and
displacement are negligibly small (E — cc, wy; — 0), then (12d) is not needed and (12¢)
simplifies to

OAQﬂ(Q’lZ + V;)LZ)L -

p +~Sﬂiﬁ+ Bllf 6(1*?]) "13';5
| (23)
+ZVT’3]at,(£°"’s”"¢’M—F"”) = 0.
Equation (22a) reduces to
C 2. (I=m1+7y) 5, d—n).
—2AL W, |6 4+ =388 — 3# b 22b
”3|mﬂ+Gq [5 DAl $P1p+ ooll Plp = (22b)
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The three equations, (19b), (22b) and (23), describe the gross deformations in terms of

the variables S’Ia, wy and ¢. However, equation (22b) is identically satisfied if the functions
§%|, and W, are derived from an invariant y as follows [13]:

4L/30/0u,

#y= — Lyt TLGPI, (24a)
" 4/10/10;1}' -
Wy = y—— — P {24b)
= G
in which P is a particular integral of
P a 2;.'}’ ~a 74
k= ~rmen (240
Substituting (24a, b, ¢} into {23} we obtain a sixth order equation of the form
58— Ax|eh+ P+ Be™e"P|, — F**) . (tlap — Ctliap— Plag) = O, (25)

where A, B, and C are constants and P is a loading function (see Notation). Then the
nonlinear problem of the isotropic plate with inextensible normal is reduced to the
determination of the invariants ¢ and y by the simultaneous solution of (25) and (19b)
wherein the right side is expressed in terms of y by (24b).

BOUNDARY CONDITIONS

The boundary conditions are most readily obtained by examining the virtual work
of the edge forces. Let C denote the boundary curve at the edge of the deformed middie
surface of the composite plate. Let ,% and ,7 denote the tension and couple per unit
length of the edge and acting at the mlddle surface of the facing, , 3Y and ,00 the virtual
displacement and rotation of the middle surface at the edge of the facmg Let 7 denote
the shear traction and 3V the displacement at the edge of the core. Then the virtual
work of all edge forces is

o~ 1
00 = ’ {97. OY+ 7, (Y + g2, 00+ (772. 159+\ /:L?.Wém}dc. (26)
vC

v

The rotation of a facing is (see [10])
. & _ .
qd) = —I—(WYJ’ai“’Sla)ay-

We define gross and relative rotations as follows:

ay

= = . £%7 N
¢ =1h+ b = ‘fﬁ‘zlﬁ«;» (27a)
- N o X N
¢ =3t — 1) = —fwalaa.,. (27b)
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Since we are concerned only with small strains, the base vectors ,jf,- of the deformed
facings differ from the base vectors @; by a rotation; that is

WA= A+ dx A, (28a)
where

A, =d+¢xa. (28b)

Strictly speaking A, # Aj; they differ by the amount of the transverse shear deformation.
However, we intend to take account of gross and relative rotations only and to neglect
the shear strains as small compared with these rotations. Accordingly, we take

A, =4, = *‘3-—[1jw3 @ (29a)

Also, from (27) and (28)
Az = 33—}1:(w3(a¢w3|a)aa, (29b)
A, = @,—i—%(f%[yiwsf})a—; (29¢)

wherein products of w5, and w,), are neglected.
We denote infinitesimal virtual rotations of the facings by

0¢ = 60+ 3¢, (30a)
where, in accordance with (27),
5¢ = -%e*’%lﬁy- (30b)
56 = —Lgow,| A 30¢
5¢ = -7t dwal,A, . (30c)

To account for gross and relative rotations it suffices to take the virtual displacement
at the edge of the core in the form

5V = ow+swo>. (30d)

Then the displacements at the interfaces are

OV = dwtdw. (30e)
The displacement of a particle at the middle surface of a facing is
e —— P L -
a0Y = ,0V+ @5¢x<qi—2—‘43> (30
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where .

Su =S4, Bu=54" (30, h)
and
5, = aTva—g(s 3;,—("’“:‘-*)5w3|u, (30i)
A At (A)— .
&y = dw,— 70 31,1—(9 41 )5w3|a, (30j)
8y =0dwy, Oy = 0wy {30k, )
Similarly we introduce

= om'*‘lm = oﬁ’? 17%‘\ (31c,d)

Let ¢= ¢, A" and U = ﬁaA“ denote the unit tangent and normal to C lying in the
surface. The kinematic and dynamic variables are expressed in terms of their physical
components in the directions of ¢, # and A; as follows:

S& = élﬁ'f' 22+A323 (323)
o = AT+ A, T+ALA, (32b)
%=X T+X,0+X,4, (32¢)
7= X0+ X2+ X34, (32d)
% = gla"{" E;}_v}, %\ = H{a\“l‘ Hz? (32@, f}
o l PES —
P = ;s = 94, (32g)
According to (la) the shear traction 7 is
N
t= N T ) A3
We note too that
0y = M, +Asl,, 8, = A, +As¢,, (33a,b)
# = gey, & = Py, (33c,d)
a Lla ] te i)
o0° - (taU Cm% s (336)

in which C and U denote arc length along curve C and along the normal, respectively.
When equations (30), (31), (32) and (33) are used in (26), we obtain

50 = j {(xl)gﬁm)z\ﬁ(;23+y-?§g)a3+<xozs FXA,
C

(34
+(X3»-‘3H) (H2)6A3 (H2>0A3]dc.

oC
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If the edge is fixed the kinematic variables W;, w;, dW,/éU and dw,/dU vanish; then the
variations A;, A;, 8A;/8U and 8A,/@U are set to zero and 0Q = 0. If any of the geometrical
constraints is removed a value must be assigned to the associated dynamic variable {in
parentheses).

The variables X, X;, fl, and H, can be expressed in terms of 7%, #*, §* and ¢* In
keeping with previous approximations we retain products of the tensions and rotations.
but neglect other nonlinear terms; then

LX | =aam%  LX,= ¢, {35a. b}
LY, = 0+ N‘g——}lﬁ“*”-%»{l— A s (35¢)
S TS Vo ) P Walss ~
LX, = ——aa 2 s af .

1= m“yua S + {1 =y, {35d)
LI o o8
LX, = Ty ot 7" +{L—y)i Ik {35¢e)
1~ £ 1 5 %
LX3 = 04"+ 7 27w, (350)
g\ = *—(’ﬁf{ﬁ\zﬁ, }?2 == Qaﬁﬁmw, (35g, h}
Ay = —egam™,  iH, = aam, (351, §)
LY = i3 (35k)

The foregoing edge resultants can be transformed to components in the directions of
the undeformed coordinate lines by means of (28b).

BUCKLING

We next consider instabilities associated with a bifurcation of equilibrium states.
Accordingly, we suppose that a prebuckled state exists and that it is associated with
small deformations. Variables associated with the prebuckled state will be marked by
an asterisk (*). We seek an equilibrium configuration which is itself a small perturbation
of the prebuckled configuration. Then the products of rotations in {2a). (3b). (11). (14d.
and (21a, b) are not needed. However, because of the dominant role of the tensions,
products of the tensions and curvatures are needed in the equilibrium equations (12¢)
and (12d).

We assume that the plates buckle with little extension of their middle surface; then
during buckling the increments in 7 and #*/ are small compared to their prebuckled
values. The displacements become w3+m3 and W;+w, (no additional markings are
needed on the increments). Then, from (12b), (12¢) and (12d), the following equilibrium
conditions are obtained for the buckled configuration:

. by .
P, — i, {36a)
2y
Y R L=0 s, LA TR
«?js”[,,-{—m“ l¢ﬁ+zna M~3laﬁ+'£'(“l—l%ﬁl’la Wt:;laﬁ'{"zzmmaﬁna W3]1/} = () {36b)
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3 2y

: Al—y)
Apl _ §F2.33 /
45 EB Lo —Hﬂ 115+L(1+ )

* * o ¥ )
aB x3[“5+mﬁn 5%’31‘23’{*‘}:’? ‘BW:;LJB = Q. (36(?)

Equations (2a), (14a), (14b} and (21a or b) (wnt*pout the products of rotations) serve to
express (36a, b, ¢) in terms of 3¢, w; and w,. (7 and 7% are supposedly known. They
are determined by the solution of the linear equations for the prebuckled configuration.)
The equations (36) become

L gt man| 0 w A AL
Sﬂ_.19+%f Bebm [—}»LW.’:“M*’C}wsulna"S_ESulwrla—7‘v3|ynﬁ =0, (373)

7. AoiL = .. \ .
Zs’g[,g — %ﬁgaﬁﬂ{(@)} +y ;’iz)“’slpaag + (Q"Lz - ")’1.'42)“’3!;};.4;3] +

. . 5 R (37b}
h ATV R -
FL b+ Tt T ok = O
j“ﬂ ZOAO”L aBpaf 12 4y 42 2 " 2y
15 }5‘2ELW3_ ‘1‘2 B [( +7y14 )w3|plaﬁ+(q)“ —Ti4 )W3lp}mﬁ]+
(37¢)

2y 1
L2 -V

e | _/1(
L+ Walap+ L(1+7)

_aﬁ—3|aﬂ+Ln ﬁw3| 5 = = 0.

The critical loads are determined by the characteristic values of 5"‘" and 5“” in the homo-
geneous equations {37},

If the shell is isotropic, {(37a} can be differentiated covariantly and summed as in
equation {22). Then equations {37) yield a system of three linear homogeneous partial
differential equations in three scalars, $|;, w3 and ws.

INFINITESIMAL THEORY

When the linear versions of (2a), (14a,b) and (21a) are substituted into the linear
versions of (12b,c,d) the result is a system of four linear equations which describe a
slight flexure in terms of the variables §% w3 and w;. If the plate is isotropic, equation
{22a) supplants equations {12b). The linear versions of (22a), (12¢) and {12d) (after the
introduction of (2a) and (14a, b)) constitute a system of three equations which describe
a slight flexure of an isotropic plate in terms of three invariants, §|,, Wy and w,. The
linear versions of (19a) and (19b) govern the small gross extensions of the aelotropic
and isotropic plates, respectively, in terms of the Airy stress function ¢. The linearization
uncouples the flexural and extensional problems.

We turn to the isotropic case in which *G/E < | and wy < ,. Then it is reasonable
to approximate (21b) as follows:

b — ;LQ;LQ;{— 2L (W’3|”’+T~’1—’~1~c1’”ﬁ'3‘3> 1</’| S T )} (38)
- —1

If (38) is substituted into {12b) we have

o Yokt 9 1+»; Iﬁ) R B ]w)
G+ ™ T+7 \gigu 1—n %

(39}
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If (14a) is substituted into (12c) with the appropriate form of B*" we obtain

A

oAoiLigA® +7, 4 )_ ] i
~ﬁsglﬂ—%c§iﬁ = 0. (40)

6(1 1) Waleh -

If (39) is differentiated covariantly and summed and $%; is eliminated by means of (40),
we obtain

,[28Y — AW,|* + BP = 0, (41)

afy

wherein

Y PINT
P = L[p +2cﬂ|ﬂ % 3| + e ﬂ[“ﬂ)H(lﬂ) ﬂ]ﬁ].

Equation (41) together with (40), (38), (14a) and (2b) govern the small gross bending of
the isotropic plate.
If the facings are thin enough ie. ,4 < A, equation (40) may be approximated by

#l, = —5— e,

When this is substituted into (38) and (39) we have

- - — iz, ’? ¥ el
= —4A29AQ;JL(W3} "+—1—-:5a "wgl,'i)

1 i (42)
oroH pia  cagpy_ “MA0MOHR apis | 1.8
+ == @+ 5)) (e "+ 3¢,
FEPVINTY 2404 I+ 4iL
-G = T ‘W[ ] (133|“+-3-c‘“|£>—-~w3|:”} @3)
G(1+7y) 1+7 |gdu (1-mG 1—n
and upon differentiating and summing,
(I—n1+7) 5
s = S gy )

Equations (42), (43) and (44) are similar to those for the theory of one-layer plates presented
by Reissner [12]; they are comparable to equations (7.7.13), (7.7.14) and (7.7.15) of
Reference 11.

If the derivatives of the loads are negligible, equations (43} and (44) reduce to

4 2 =p )
Sﬂ__ZAQ/lQH'}’S‘;la — 2/1.0_11(2,1')”( P _ 44L Wsl‘:ﬁ ﬂ (45)
G(1+7) L+y \ghopt 1-7
and
5|4 = (A= +9) 5 (46)

3tep T 822 gAouLy

The integration of equations (45) and (46) is discussed in [11].
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ILLUSTRATIVE PROBLEM OF BUCKLING

Perhaps the most important application of the foregoing theory is its use in the
calculation of buckling loads. To illustrate this we consider two fundamental problems,
the cylindrical buckling of a wide plate under (1) unaxial compression and (2) pure
bending.

A cross-section of the plate is shown in Fig. 1; the dimensionless coordinates are
8, = x,/L in which x, denotes a length as shown. For an isotropic plate the elastic
constants are

nBlt = pB2222 = Bl122 . grait 12'7'7, B2z - .
x?

it s R
d f
X, - — X, £ d
2 +
AN SOUSRNNNNNNNY Y NN +
L e

F1G. 1. Cross-section of a sandwich plate.

The plate is supposed to be wide in the direction of x, so that the plane strain assumption
is justified, i.e. y;; = 0. Then

S,l =r—112=n12_m12_m12=0
and the remaining variables are independent of 0.

(1) Uniaxial compression

Prior to buckling the only non-zero stress resultant is 722 = _X. Then equations
(37a, b, ¢) give the following three homogeneous differential equations:
. A% (1=n3)(1+7v
AL, 222‘*‘ (o'1 1AW3 222 szs?zz‘*”ﬁs.zzzzz +“‘@%If;}}_})§z = 0, (47a)
%2 _ y—HX
6;8 —12 '1':”}3,22 2mW3’22
(47b)
2L Aopt _ 2L A .
10 - (0/12 1427)”’3.2222 e Ou(oiz 1_’L23’)W3,2222 =0,
124y=1) _ _ 122
3(pA— A5 —24ELw 3+mX“’3,zz“TXW3,2z
47
_ 2AgAquL 2AgAouL (470)

1= (Q)“2+1127)W3.2222 1=n (0'12 112)’)W3,2222=0-
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For the simply supported edges as depicted in Fig. 2, the boundary conditions are
{see equation (35))

Wy = wy =0 (484, b)
m?? = m?? =0 at g, =0, 1L (48c, d)
22 = 0 ) {48e)

Condition (48e) implies that the load acts through the effective centroid of the cross-
section as shown in Fig. 2.

B

o
P e
\ g |
/—<3
|
7
X

\
i

e B RS -

FiG. 2. Edge support.
From the stress—strain relations (14a, b) and the end conditions (48c¢, d) we have
Wiz == W35, =0 at 8, =01, {49a. by

and from (21b) and (48¢)

~ 3

:;:\ - (]; =0 a 0,=01. (50)
The boundary conditions are satisfied by the functions
wy = Asina,l,. {51a)
wy = Bsin a,,0,. (51b)
$ = Ccos a,,l,, {51c)

where a,, = mn. The substitution of (51a, b, ¢} into (47a, b, ¢} leads to three homogeneous
algebraic equations in A, B, C, which, in turn, give the characteristic equation.

(0 ,1)2[ , ( I+5 ) 4K, y~~1) i \/ 1+n) K, ?
8 o i Do
pi 8K : + ’; (1 +b )K’" (1)11))4 * + 1 . ( ¥ (3(,,,/)

Yy ~ N 2 ~2 . 22 2 +
léqu ; Ay —alga+ 1fllqu Aou+ ay K, 2y~ a(oa+1a)K
(N2, A) 3y (a,,4) 9 p+1 (52)

v (7=1\, @lagK, L f(v—1) a v-1> ﬁJ%z
2l e S (R
s
+ };1 +(L_;T> iJfa (0a+ ia)Km }]
22

2
_d "’71;"“ . (33a)
0

wherein
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2
—n?)E
= M (53b)
aQaQE
E a 2| 7 w2
K, 1+_[E+ 3 (aml)]m(ami) , (53c)
A A A A
== =5, i==, ==, 53d-
a 5 ] 7 a % b i ( g2)

and ,022 is the critical stress in the upper facing. The formula (52) gives two values,
p. and p_, according to the sign preceding the radical. The former, p., corresponds to
modes which are nearly symmetric with respect to the middle surface, ie. wy > w; or
wy = 0 if y = 1; the latter p_, is largely antisymmetric, i.e. w3 > wy or w3 =0 if y = L.
When y = 1, equation (52) reduces to the result obtained by Tu [15].

For sufficiently small a,, A equation (52) gives

| (o)
p-= 14y

y 1., 2
[1+y+12(qa +y.a )], (54)

which is the Euler buckling load; it is also exact for all a4 if E = G = o0.
For large a,A the formula gives

| (oA’
Py = 8

0 T
[(1i1)7+(1+ 1)‘*3‘], (55)

which is the buckling load for the top (+) or bottom (—) facing acting independently.

104
p
104
-3
10 11,H||1_l T T T T T T T L
10 1 10
ax

FiG. 3. Buckling under axial load.
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Another simplified version of (52) applies when ,a < 1 and G < E; then

n?A%y Eqan?i?{ y =
L A h 5 ebedm A7 Y )
Tipiivey Mrere (1——»12)(;( '

P 1 +;}/ (563, b}

The factor (14+0)” ' is the shear correction to the Euler load when the facings are
effectively membranes.

The formula {52) can be used confidently for quasi-Euler buckling of thin plates.
However, thick plates may buckle in nonsinusoidal modes at lower loads [14]. Consider
an example in which

- E
/1=0, Qa=§1_0', g

i

8
Qi

i
(o
=

i
L

Plots of p, versus a,,4 are shown in Fig. 3. In this instance the curves for the symmetric
modes (p.,) lie entirely above those of the antisymmetric modes so that the former do
not concern us. With y = 1 the curve of p_ versus nl is redrawn in Fig. 4 form = 1,2, ...
From that figure it appears that the buckling load is practically constant in the range
A to B. However, this implies that a short plate, say 7A = 6, buckles as readily as a much
longer plate, say nd = 0-4. This is unlikely. Instead we anticipate a transition from the
Euler buckling to nonsinusoidal antisymmetric modes as 74 increases. According to
Goodier and Hsu [14] these modes involve wrinkling near the ends while the central
pottion remains nearly Jindeformed. Their work indicates that the buckling load can be
“?5" ificantly lower (about one half) in this range. Then the actual curve will lie below
“line AB of Fig. 4; fhis is indicated by the shaded region.

(2) Pure bending
If the prebuckled state is pure bending in the direction of 6, only, then

22 __ (+pY _ o,
Aghouy(1+5)
where Y is the bending couple and
T4y
S = *@“(Qa2+ 1»(52}').

If the pure bending state is replaced by the condition illustrated in Fig. 2, then s = 0.
Accordingly, the results apply as well to the condition of Fig. 2 with the understanding
that the applied couple is Y/(1+s5) and the critical stresses must be reduced proportion-
ately.

i"Vith the above values for #22 and #22, equations (37a, b, ¢) yield three homogeneous
differential equations much like (47a, b, ¢). We take the end conditions of (48a, b), (49a, b)
and (50); they are illustrated in Fig. 2. As before we have solutions given by (51a, b, c).
Substituting them into the differential equations we obtain three linear homogeneous
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N\
~ ~ NS ~ \\\
\\\\\\\\\ B
\\\\\\\\\\\\\\\\\\\\\
W
SO
y=1
T T T T T ' ]
1 ps
X

F16. 4. Axial buckling load vs. thickness parameter.
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FiG. 5. Buckling under a bending couple.
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algebraic equations; the requirement for a nontrivial solution yields a formula for the
buckling load,

_1 oft ﬁ) -2[(1+,:

. )(qaz—}’;az)

a L+y 4q
et e e e

1+;> o, L2

. [(Izy (oa +7y.a )+K K"—

N 1+y\d*(ga* +7,4%)
12y K.,

0.22 0..22
= {1 —n? Y e ,
p={(-n )( EE )

and 402? and ,0?? denote the stresses at the uppermost and lowermost points of the

plate. _
For small values of «,,4 the formula gives

e NSl el

Here the (+) and (—) signs merely indicate opposite directions of the bending couple.
Notice that this value does not depend on 4. Moreover, for long wave lengths (74 < 1)
we anticipate that the critical stress will be unaffected by the end conditions.

wherein

1PN

FiG. 6. Buckling couple versus thickness parameter.
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For large values of «,4 the formula gives

Py = 21—4(1+9§“- +§§>(am1)2<£:;—2){(1i1)9a2~(1$ 1)y,a?].

The two values, p, and p_, correspond to the independent buckling of the upper and
lower facings under axial compression.

Buckling under conditions of pure bending has fundamental importance as a
mechanism of local failure in thin sandwich plates and shells. An estimate of the critical
bending stress can be obtained from a plot of p versus a2 as shown in Fig. 5. For purposes
of illustration, plots of p versus n1 are shown in Fig. 6 for thecase y = landm = 1,2,...
From Fig. 6 it is evident that the load on a thin plate cannot exceed that of line AB.
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Zusammenfassung-—Die Gleichungen zur Erfassung grosser Durchbiegungen an Schichtplatten mit schwacher
Fiillung werden abgeleitet und in invarianter Form dargestefit. Die allgemeinen Gleichungen umfassen sowohl
die Biegesteifigkeit der Aussenschichten, als auch die Querdehnung des Kernes. Die Gleichungen fiir Ausbeulen
und kleine Durchbiegungen erhilt man als Spezialfille. In einem Beispiel wird die Beullast dilchbestimmt
und damit die Anwendung der Gleichungen erldutert.

AbGerpakT—BoiBoasTCA ypasHeHus 1 00abiuux ApormMOGOB B CAOMCTBIX NIHTAX €O CRabbiM BHYTPEHHUM
CJIOEM; YPABHEHHA NAIOTCA B MHBApMaHTHOH dopme. OBluee ypaBHeHue BKIIOYAET CONPOTHRIICHHE MITHDY
BHEUIHHX MOBEPXHOCTER M MonepeyHoe paclinpeHne cepAUeBHHbl. Kaxk crieuManbHple Cllydan OaroTCH
YDABHEHHSR /I BHINYYHUBAHMSA M Manbix nporuboe. MnnocTpupyeTcs Ha NpHMEpPE TIPHMEHEHHE ITUX
YPABHEHUH ONA MPEICKA3aAHUA KPHTHYECKHUX HArpy3o0K.



