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GENERAL THEORY OF SANDWICH PLATES WITH
DISSIMILAR FACINGS
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Abstract--Equations are derived for the large deflections of sandwich plates with weak cores and presented
in an invariant form. The general equations include the bending resistance of the facings and transverse exten
sion of the core. Equations for buckling and for small deflections are obtained as special cases. An example
illustrates the use of these equations to predict buckling loads.

NOTATION

The usual suffix notations are used. Latin suffixes represent the numbers I, 2 and 3,
while Greek suffixes represent only I and 2. Repeated suffixes imply summation unless
enclosed by parentheses.

Since there is no need to denote covariant differentiation with respect to the three
dimensional space, the vertical line (I) is used here to denote covariant differentiation
with respect to the undeformed middle surface. A comma (,) denotes partial differentiation.

A prefix !1 = .Q or 1 refers to the upper or lower facing; the prefix is underlined to
avoid confusion with a suffix. Upper and lower signs, e.g. ±, apply accordingly as the
prefixl1 = ..Q or 1, respectively.

Where a distinction is necessary, capital letters refer to the deformed plate while
lower-case letters refer to the undeformed plate.

Essentially new variables are defined where they arise. Others are listed below.
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a characteristic length of the middle surface
thickness of the core
thickness of a facing (/1 = Qor I)
= dl2L

= 2i. +oi./2 + 1i./2
= .dlL - -

= 0)-1/'

dimensionless surface coordinate
x 3

= -:-: x 3 = length along the normal to the middle surface
I.L

= ~,,: the position vector is LR
= R. 3
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= Q:x.. Q{1

= determinant la.pl
= ,j(a)e,p; e,p = permutation symbol

= c.~ = unit tangent to the edge
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= u,A' = unit normal to the edge in the surface
= metric tensor associated with 0'
= determinant Igijl

1 ~ ~

= U (~~Ap+~~A 3), external force per unit area

= ,j(aHnn';A, +.q;A3), force resultant per unit of the OP coordinate line (fJ of cd

= ,j(a)L£,p~m'~AP, resultant couple per unit of the oP coordinate line (If of (Xl

= ~v,a', interface displacement

= 2wiai
, relative displacement of the interfaces

= 2wjai
, average displacement of the interfaces

= Opi+ Ipi
- 3 - 3

= oP -IP
" f _

= oP --IV. yo

= QAQP' - !'(!p'

= A(QAQP'+ !A!p')
= Qn'P + !n'p

= ;, (on'p _ I,",p)
. y'

= om'~+ ,m'~
= I'(om'~":" I m'~)

= oq" + I q"= fli"!, + 1"
= I.(oq''':'',q') = m't+ c'
l' .

= L(Wdw3)1,~

= 1(oB,p + I B,~)

= 1(~B,p- ;B,~)
strain of an interface
strain of the middle surface of a facing
= (Q1',~+1'(,',~l

stress tensor

= i.L f+ I ,j(g),3' d03
,ja. -I

L ' -3

= =-;':-(,j(oa)o,3.1 + ,j(la)1 ,33),ja .. . .

an invariant stress function; cf. equation (16)

see equation (17)

(
-3 " ;:y. -') (I-'ll "I P

= LB P +21' I,+--p I, --.-.-P
1+Y 2LAoAoJl,p

an invariant 'stress function' ..

see equation (24c)

[
4;'oAoJl1' (-31' ,pi') ;:; -~I ]

= L p3+1<'PI~-(i-':"'IiG(I+'y') P ,+2<' p, +l+~P P

3(1-'I)G;:2 (I-'I)G 1+]'_... -_.- ._----+-------
(oA2+1'1;2);'0)'01' 4)'QAoll

3(l-'I)'G(1 +y)

= 2L2(0,.\2+ 1'!A
2)1.QA2QJl2),

4"\o;·oJl ( ; )
= (l':''I)G 1+).
physical (not tensorial) components of edge forces
physical (not tensorial) components of edge couples
edge shear force on the core
physical (not tensorial) components of edge displacements
Poisson's ratio of both facings
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shear modulus of a facing
Young's modulus of a facing
transverse shear modulus of an orthotropic core
transverse shear modulus of an isotropic core
Young's modulus for transverse extension of core
stiffness tensor; cr. equation (20b)
flexibility tensor; cr. equation (20a)
shear flexibility tensor of core; cr. equation (2c)

jA 1J1
=-'-'

Q)'gl1

INTRODUCTION
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MUCH attention has been directed to the behavior of sandwich plates. Notable con
tributions to the theory were made by Reissner [1,2,3], Libove and Batdorf [4], Wang
[5] and Yu [6]. Numerous others have dealt with the stability of sandwich plates, but
much of the work does not account for the bending resistance of the individual facing.
Equations which include the bending stiffness of the facings were given by Grigolyuk [7]
and elaborated by Fulton [8]. They do not include the transverse extensibility of the core.
Equations for rectangular plates with equal facings were given by Prusakov [9].

In a previous paper [10] the authors presented a general theory of sandwich shells
with weak cores. The basic theory of that paper is applicable to sandwich plates. However,
the formulation of the earlier work is not well suited to the analysis of plates with dis
similar facings. Moreover, the specialization from a curved surface to a plane simplifies
the equations and enables us to introduce invariant functions which reduce the number
of dependent variables and differential equations. Here we present a general formulation
which includes dissimilarities in the facings and the important geometrical non-linearities.
The equations are developed from a unified point of view with few approximations; the
important approximations are (1) the neglect of membrane and bending stresses in the
core and (2) the Kirchhoff hypothesis in the facings. The geometrical nonlinearities are
comparable to those of the von Karman theory of one-layer plates. Orthotropy of the
core and facings is taken into account. The nonlinear formulation is expressed by five
partial differential equations or two if the plate is isotropic and also transversely in
extensible. Equations for small deflections and equations for buckling are obtained as
special cases.

The equations are applied to the buckling of plates with unequal facings.

SOME BASIC EQUATIONS

We begin by citing the basic results from the earlier paper [10]. Notations have previ
ously been described.

The stress distributions in the core are

s"l 0'33
,,33 = " 03

- 2)..2L4 + 2A3U'

wherein s" and (133 are a transverse shear resultant and mean normal stress.

(la)

(lb)
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The core behavior is described by relating the relative interface displacements lI' i [0

the dynamic variables ,~., and 6
33. The relations are

If the core is orthotropic

(2a)

(2h)

(2cl

G' and E are the transverse shear and extension moduli, Wi is the mean of the interface
displacements and OJ3a is a gross rotation,

_ AL I Lw3 = -W ---w
(J. 2 3 (1 2 Cl'

In the quadratic term of (2a) the transverse shear strain is assumed small compared to
the rotation OJ3,; then it is consistent to use the approximation w, = - hT'31, to obtain

(2d)

It is worth noting that (la, b) and (2a, b) are exact within the limitations of linear theory
and the weak-core hypothesis (raP = 0).

The second fundamental tensor of the deformed interface is

The strain components at the interfaces are given by

L
~i',p = I(~T',I/J + ~T'pl, ± w,11i ± wPI,)+1<»'3Ia ± w3Ia)(~T'3Ip ± w3 11i)'

(3a)

(3b)

Here as elsewhere the products of rotations about a normal are neglected (see [10]). In
accordance with the Kirchhoff hypothesis the strain components at the middle surface
of a facing are given by

(3c)

If the facings are linearly elastic and similar

Ii nil - P -r:X :::=: _==-- BI7. P;""',l .
L 4 11'1.'

where nil is an elastic constant for the facing. Then the tensions and bending couples
are rehited to the strain and curvature components by

(4a)

(4b)

These forces and couples act at the middle surface of the facing.



General theory of sandwich plates with dissimilar facings 161

When the shear resultants have been eliminated, the equations of motion for a facing

are
(Sa)

(5b)

These equations are exact and applicable to dynamic situations when the load components
~pi include the inertial loads. The underlined terms of (5b) can be neglected; then it

reduces to
Ii-~-Ii ,Ii_nP + ,s +nn 1,-0.. 2/. .

A COMPATIBILITY CONDITION

(6a)

The Gauss equation of the undeformed and deformed middle surfaces of a facing

are (see [11])

and

(7a)

(7b)

(8)

where nr'Ii;", and ~R'lil'~ are the Riemann-Christoffel tensors of the respective surfaces
and nK is the Gaussian curvature of the deformed surface, If (7a) is subtracted from
(7b) and products of the strain components are neglected, the result is

L2

r,'Ii[;Yb" I - L 2 K - 'Ii.)'b B B
. ~f,b Ii;' - ~ - '2-r, £ ~ ')'~ lib'

We define a weighted strain component,

:!afJ ::::: Q')'ap+}'t}'afJ

wherein

(9)

(10)

(11)

To obtain the desired compatibility equation we multiply 0(8) by OAOP, 1(8) by 1A1P.
then add them, use (3a). and obtain - - .

Q},Qp£'PE;'b'j\b!liY = 1-E'Pf,l'b[(Q/.QP + 1/'lP), (it'3\,j.il'3\Pb +W31,yW3\p,j) +

+(Q/'QP-1)'lP)(it'31'l'w3Ipb+ w31,ylt'31/ib)] = ,F(it'3' w 3 ),

EQUILIBRIUM CONDITIONS

Instead of the equilibrium equations (6) we form linear combinations as follows:
The sum of Q(6a) and 1(6a) is

(12a)
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where bars n denote a sum (see Notation). Next we divide 0(6a) by 0)'011, d6a) by 1/,,/1

and subtract the latter from the former. The result is . . - - -

-~PI l+y.p '-13 0n ~ - -2-s + Ap =,.
I

wherein

By adding Q(5a) and t(5a) we obtain

l 1 - 1- y 2y
p3 +-2'splp +2-cP1p +fflaplaP +fl~PBap+-l-flaPBap +---ffPBap = O.

Ie + /' A(1 +y)

Herein

(12b)

(12c)

(13a, b)

By subtracting t(5a) from Q(5a) we have

X 2,· l-y
Ap3+l.cPI +-sp\ _L2(}33+map\ +_I_fiapjj +,\,__ flaPjj +,i,fffJB fJ = 0 (12d)

2 fJ 4 fJ afJ 1+ /' ~P 1+Y afJ a .

BENDING AND STRETCHING RELATIONS

From (4a, b) we obtain

m-aP = QAQIlLB-aPPA[('2 12)-, I (12 '2) I ]--1-2- Q'''' +/'tll. "'3 PA + QII. -Ytle W3 PA ,

map = oAoJ.lAL B-afJpA[( 12 '2) I (12 12) - I ]-' 12 QII. +Ytle W3pA + QII. -Ytll. W3PA'

flaP = A "jjaPPA'), .Q Q,... pA'

(14a)

(14b)

(14c)

(14d)

-ap _ 1 1 B-afJyq (, I I - Q;'+ t;· - I -n - QII.QIlII.L W y q + Wq y 2 W3 yq

XII )
-2:w3Iyq+r:W3IyW3Iq+r:W3IyW3Iq .

We can also replace the relative interface displacements W a by the relative middle-surface
displacements

(15)
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THE STRESS FUNCTION

The equilibrium equation (12a) is identically satisfied if

wP = £aq£PY4>lyq-FaP,

where FaP is a symmetric particular integral of

Fapla = ii,

163

(14e)

(16)

(17)

However naP must derive from continuous displacements wa in accordance with (14c),
(9) and (3). That is Yap must satisfy the compatibility condition (11) and

1 -
YaP = -,,--CaPyqnyq (18)

QAQJ1

in which C apyq is the flexibility tensor, i.e.

C Bplyq = C Byqpl = fJYfJqapplappl a p'

In the sequel we will assume homogeneity so that Capy~11l O. Substituting (16) into (18)
into (11) we obtain

(19a)

If the facings are isotropic

Then (19a) takes the form

4>1:~+(1 +11)£"P£Y'>F".>lpy+I1F:I~ = -2(1 + 11).?(W3 , w3 )·

THE NONLINEAR DIFFERENTIAL EQUATIONS

(20a)

(19b)

The core relation (2a) serves to eliminate the variable (1'33 from (12d). The core relations
(2b) serve to eliminate the relative displacements w" (or IX,,) from (14d); the result is

nap = Q).,QJ1).,Bapyq(-~LW3Iyq+CYWSIlI~
).,2 lL )

- 3ESIlIIlY~-2W3Iy~+W3IyW3Iq+W3IyW31~ . (21a)

When (21a), (14a, b), (16) and (13a, b) are substituted into (12b, c, d), the latter together
with (19a) constitute a system of five partial differential equations in the five dependent
variables sa, 4>, w3 and W3'



164

If the plate is isotropic,

and
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(20b)

(2Ib)

Then

iiafJ = QAQ,uA [ - 2XL ( ~, 31 afJ + I ~ I] aafJ ~'31~ )

+~(sfJla +sal fJ + I~I] aafJs~I~)

n
2

( I] )__ ·~~lafJ+__ aafJ~~11'
3E ~ I-I] . ~I'

-AL(w3IafJ +-'l-w31~aafJ)
I -I] /

+2(11'3Iait'31/1+ 1~l]aafJw31~1t'31~)

+ 2(1t'31 a11' 31 fJ + I~-,tafJW31~w31~)J,
When (2Ib) is substituted into (12b), the latter is then covariantly differentiated and
summed, the result is

2 ")"
")1L-:' lafJ_-fJla _A~ -alfJ" 'L, lafJ

- _A 11 3 afJ + GS fJa - 3E S afJ~ - I, \'\ 3 afJ

(1-1])(1 + )'LfJ (I-I]l-Ii
- -----;;--,----Sill +--;:---P IIi

2QAQ,uA), QAQ,u

+4(1-I])(W3Ialt'3IfJ)lafl+41](W31~W31~)I; = O.

(22a)

(23)

Notice that equation (22) contains .~a only in the invariant sala, but that .~a will appear in
a nonlinear term of (12c) and (l2d). However, if the relative transverse extension and
displacement are negligibly small (E ---> 00, 11'3 ---> 0), then (12d) is not needed and (12c)
simplifies to

-3 + X-fJl + .lcfll _ QAQ,u(Q)' 2 + Yt'1
2

)L ~tl lafl
P 2/ fJ 2 fJ 6(1 _ I] ) 3afJ

(22b)
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The three equations, (l9b), (22b) and (23), describe the gross deformations in terms of
the variables sala' w3 and 4>. However, equation (22b) is identically satisfied if the functions
sal, and ,}'3 are derived from an invariant Xas follows [13J:

_ 4AoicoJi}' law = X--'-'-~----X - P
3 (1 I1)G(l +y) a '

in which P is a particular integral of

(24a)

(24b)

PI~ =
Jh

JcL~(~I+}laj,. (24c)

Substituting (24a, b, c) into (23) we obtain a sixth order equation of the form

'

,PY-A laP P- +B( ,q.P)'A,1 F-'P) (, -c I" -p-, )- 0X 'Pl' Xap + t: f. '+')'q • X,p X y,p ap - , (25)

where A, B, and C are constants and P is a loading function (see Notation). Then the
nonlinear problem of the isotropic plate with inextensible normal is reduced to the
determination of the invariants 4> and X by the simultaneous solution of (25) and (l9b)
wherein the right side is expressed in terms of X by (24b).

BOUNDARY CONDITIONS

The boundary conditions are most readily obtained by examining the virtual work
of the edge forces. Let C denote the boundary curve at the edge of the deformed middle
surface of the composite plate. Let ;n and ;:m denote the tension and couple per unit
le\1gth of the edge and acting at the middle surface of the facing, nbY and n60 the virtual
displacement and rotation of the middle surface at the edge of the facing: Let 1 denote
the shear traction and %V the displacement at the edge of the core. Then the virtual
work of all edge forces is

(26)

The rotation of a facing is (see [10])

We define gross and relative rotations as follows:

(27a)

(27b)
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Since we are concerned only with small strains, the base vectors nAi of the deformed
facings differ from the base vectors Qi by a rotation; that is -

(28a)

where

(28b)

Strictly speaking 13 :F 13 ; they differ by the amount of the transverse shear deformation.
However, we intend to take account of gross and relative rotations only and to neglect
the shear strains as small compared with these rotations. Accordingly, we take

(29a)

Also, from (27) and (28)

~ ~ 1_1 1----',!Ay = a y+r:(w3 y±W3 y)a3'

wherein products of w3t. and w31a are neglected.
We denote infinitesimal virtual rotations of the facings by

where, in accordance with (27),

(29b)

(29c)

(30a)

(30b)

(3Oc)

To account for gross and relative rotations it suffices to take the virtual displacement
at the edge of the core in the form

Then the displacements at the interfaces are

----'

,!bV= ow±~.

The displacement of a particle at the middle surface of a facing is

----' ----' ----' ( L ~ )'!oY = '!oV± '!oc/> x ,!A2 A 3

= oo:± &X:

(30d)

(30e)

(30f)
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where

167

(30g, h)

and
- - 4- (o).+ t 4)
ba = bWa-4"bw3Ia - 4 - bW3la'

~ I (04+ t 4)- Iba = bwa- 4bw3a- - 4 - bW3 a'

(30i)

(30j)

(30k, I)

Similarly we introduce

h= QJt+!?l, n= Qn-!n,

1h= Qm+tm, m= Qm-!m

(31a, b)

(31c, d)
-.> .....

Let C = caAa and U = uaAa denote the unit tangent and normal to C lying in the
surface. The kinematic and dynamic variables are expressed in terms of their physical
components in the directions of C, Uand .43 as follows:

-->.

ba = Ktu+K2c+K3A3

~ = 8 tU+8 zC+83A3

'Ji = X 1U+Xzc+X 3A3

n = X tu+Xzc+X3A3

@= H1u+Hzc, m= H1u+Hzc

......;)" 1 .....>. ~

y = I UasaA3 = Y A3.

According to (Ia) the shear traction tis
~ I ~

t = 2}.Lzua;SaA3.

We note too that

ba = 8 1ua+82ca,

ca = efJaufJ'

(32a)

(32b)

(32c)

(32d)

(32e, f)

(32g)

(33a, b)

(33c, d)

(33e)

(34)

in which C and U denote arc length along curve C and along the normal, respectively.
When equations (30), (31), (32) and (33) are used in (26), we obtain

bil = t [(Xt)K t +(X Z)K2 + (X 3+Y- aa~t)K3+(Xt)81+(Xz)8z

( oR1) - aK 3 083J+ X 3 - oC 8 3 -(H2 ) au -(Hz) au dC.
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If the edge_is fixed_the kinematic variables Wi' Wi' (')i{'3!OU and ow,!aU vanish; then the
variations Ai' Ai' oA3!cU and fJA3!cU are set to zero and 8n = O. If any of the geometrical
constraints is removed a value must be assigned to the associated dynamic variable (in
parentheses).

The variables ~'i' Xi' it, and Ha can be expressed in terms of naP, flap, ij' and q'. In
keeping with previous approximations we retain products of the tensions and rotations.
but neglect other nonlinear terms; then

LX 3

LX I upu,iia", LX 2 c'iJaftP,

LX - -a+ I _12Y~ap (1 )-ap] I
3 = uaq {1+y)L ua }.,n + -yn W3 p,

LX 1 _l_upu l.2Yflap +(1- ")'fiaP I
I +y a;. . ( J'

LX2 = -~.'C U [2?flap +(1_y)nap j,
1+~) p a A. ,

1 _ a I _ -ap
;"uaq +r:U,/1 w3 lp,

(35a, b)

(35c)

(35d)

(35e)

(350

LY = uasa.

HI = - <'pufliap,

),H 1 = - l'pUalnaP,

H2 = ui1pfflaP,

'H - - ap
I. 2 = UaUpln ,

(35g, h)

(35i, j)

(35k)

The foregoing edge resultants can be transformed to components in the directions of
the undeformed coordinate lines by means of (28b).

BUCKLING

We next consider instabilities associated with a bifurcation of equilibrium states.
Accordingly, we suppose that a prebuckled state exists and that it is associated with
small deformations. Variables associated with the prebuckled state will be marked by
an asterisk (*). We seek an equilibrium configuration which is itself a small perturbation
of the prebuckled configuration. Then the products of rotations in (2a), (3b), (II), (I4d, e)
and (2Ia, b) are not needed. However, because of the dominant role of the tensions,
products of the tensions and curvatures are needed in the equilibrium equations (I2el
and (12d).

We assume that the plates buckle with little extension of their middle surface; then
during buckling the increments in nail and flap are small compared to their prebuckled
values. The displacements become ~3 + \1"'3 and lV3 + w3 (no additional markings are
needed on the increments). Then, from (l2b), (I2c) and 02d), the following equilibrium
conditions are obtained for the buckled configuration:

(36a)

(36b)



(37a)
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Equations (2a), (14a), (l4b) and (21a or b) (without the products of rotations) serve to
* *express (36a, b, c) in terms of [;Ii, w3 and ""3' (n'p and fl'P are supposedly known. They

are determined by the solution of the linear equations for the prebuckled configuration.)
The equations (36) become

2' . [ '2 AL J-P )'9/'QIl)' -opy~ _ - -, '/1 _~'/1 __ , =
s - I +y B ALw,3Iy~,+C)'/1s I~o 3E s I/1Y~o 2 W31y~0 0,

1 <PI QAQIlLB-'PPA[( 12 '2)-, I ('2, .2) I l2/ P-----u- QIt +Yet H 3 PAoP+ QA - riA W3 pAoP +

(37b)

(37c)
2·' * Ie( I}') * Ie *

I -,p - I -,p - I -,p - I 0+--n W3'P+----n W3,P+-n W3 ,p = .
L(l +y) L(1 +Y) L

* *The critical loads are determined by the characteristic values of nOP and fl'P in the homo-
geneous equations (37).

If the shell is isotropic, (37a) can be differentiated covariantly and summed as in
equation (22). Then equations (37) yield a system of three linear homogeneous partial
differential equations in three scalars, ,5 Plp, 11'3 and w3 •

INFINITESIMAL THEORY

When the linear versions of (2a), (14a, b) and (21a) are substituted into the linear
versions of (12b, c, d) the result is a system of four linear equations which describe a
slight flexure in terms of the variables so, it'3 and W 3 . If the plate is isotropic, equation
(22a) supplants equations (12b). The linear versions of (22a), (12c) and (l2d) (after the
introduction of (2a) and (14a, b» constitute a system of three equations which describe
a slight flexure of an isotropic plate in terms of three invariants, .501" 11"'3 and w3. The
linear versions of (19a) and (19b) govern the small gross extensions of the aelotropic
and isotropic plates, respectively, in terms of the Airy stress function (p. The linearization
uncouples the flexural and extensional problems.

We turn to the isotropic case in which ;,2GjE ~ I and \1'3 ~ ii"3_ Then it is reasonable
to approximate (21 b) as follows:

fl'P = ;'QAQ,u[-21L(it'31°P+12'1a'PI1"'31~)+~(5PI,+.5'IP+/\a'Ps'lI~)l (38)

If (38) is substituted into (12b) we have

-P 2iQ)'QJ1.Y ('PI' 1+ II"IP) _ 2;'QiQ/.IY(" pP 2AL - I'p)s ----- s +----s - . ----ow
G(l+:') - , 1 /1'. 1+:' QAQ/I I Yf 3'_' (39)
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If (14a) is substituted into (12c) with the appropriate form of BaPy~, we obtain

Q;'QIlL(QA2+Y~A2)W laP_-3 J: -PI _l-PI - 0 (40)
6(I-rJ) 3ap P 2/ P 2

C P - •

If (39) is differentiated covariantly and summed and sPlp is eliminated by means of (40),
we obtain

wherein

- lapy - A -, laP BP= - 0W 3apr "'3 ap+ -, (41)

Equation (41) together with (40), (38), (l4a) and (2b) govern the small gross bending of
the isotropic plate,

If the facings are thin enough i.e, '!)" ~ A, equation (40) may be approximated by

S-PI - _p-3 _1."PI• P - 2~ p.

When this is substituted into (38) and (39) we have

fi"'P = - 4,{ 2 A IlL(W laP +-.!!-aa{JW Iq.)QQ 3 1 IJ 3q

+ AQAQIl('Pla + 'alfJ)_ 211AQAQIl afJ(p·3 + 1. -PI)
G S S (l-IJ)G a

2
C

p,

sP- 2AQAQIl,), sPla = 2AQAQIlY[ fi __1+11 (P3IP+tcal~)_'±AL "}31~p.l,
G(1 +1') a 1+1' Q,{QIl (1-IJ)G l-IJ J

and upon differentiating and summing,

- laP _ (1-11)(1 +1') =

W 3ap - 8A2 QAQ/.t-Uy P.

(42)

(43)

(44)

Equations (42), (43) and (44) are similar to those for the theory of one-layer plates presented
by Reissner [12]; they are comparable to equations (7.7.13), (7,7.14) and (7.7.15) of
Reference 11.

If the derivatives of the loads are negligible, equations (43) and (44) reduce to

sP UQAQJ.lY sPIll. = 2AQAQJ.lY( pP _ 4AL w31~p), (45)
G(1 +1') a 1+1' QAQJ.l I-IJ

and

w laP = (1-~)(1 +,L 3 .

3 afJ 8A2QAQJ.lLr p

The integration of equations (45) and (46) is discussed in [11].

(46)
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ILLUSTRATIVE PROBLEM OF BUCKLING

Perhaps the most important application of the foregoing theory is its use in the
calculation of buckling loads. To illustrate this we consider two fundamental problems,
the cylindrical buckling of a wide plate under (1) unaxial compression and (2) pure
bending.

A cross-section of the plate is shown in Fig. 1; the dimensionless coordinates are
ea = xJL in which XlI denotes a length as shown. For an isotropic plate the elastic
constants are

B22II = --.3!L1-1] , B1212 = 1.

LI.

;"""""""~~"""""""'~"7"7""77""':'7"'~TT--r)~~-.i
gd

--r
X.@----------- X2 d

~~~~~~~....."......,,~~~-.i

------1.IJ
FIG. I. Cross-section of a sandwich plate.

The plate is supposed to be wide in the direction of Xl so that the plane strain assumption
is justified, i.e. Yil = O. Then

Sl = fi12 = n l2 = ml2 = mI2 0

and the remaining variables are independent of Ol.

(47c)

(47a)

(1) Uniaxial compression
*Prior to buckling the only non-zero stress resultant is fi22 = - X. Then equations

(37a, b, c) give the following three homogeneous differential equations:

- L
ALw3 ,222 +"2(QA

(47b)
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For the simply supported edges as depicted in Fig. 2, the boundary conditions arc
(see equation (35»

it'3
W 3 = °

)
(48a, b)

m22 m22 = 0 at (}2 = 0, I. (48c,d)

il 22 0 (48e)

Condition (48e) implies that the load acts through the effective centroid of the cross
section as shown in Fig. 2.

FI(;. 2. Edge support.

From the stress-strain relations (l4a, b) and the end conditions (48c, d) we have

and from (lIb) and (48e)

at Oz = 0, I, (49a, b)

at liz = 0, 1. (50)

The boundary conditions are satisfied by the functions

>1'3 = B sin :X",02'

,\,2 = C cos :X",Uz,

(51al

(Sib)

(5Ic)

(52,

where :x'" = mrc. The substitution of (51a, b, c) into (47a, b, c) leads to three homogeneous
algebraic equations in A, B, C, which, in turn, give the characteristic equation,

p1: = (:x",Xf[1 +gaz
(1 +b2 )K", +(1_:2) qK':"4 +(::---~.·.)a +zf ± J{[l + (1_~).').q;"';lj2

8K", 3 \ i ~ (:X,,) i + I. 4 _ \ j • (x",),) _

16qK", 2(y-l)a(Oa+la)qK;, a2(oa+lafK~ 2(y-l) __ ._._._.-~~+_._.._.~-~--~._~ +-----··-··~-········--+~~~a(oa+la)K",
(I + y)(CX",A)4- 3)' (a,,),)4- 9 3(y + 1) - -

wherein

p
_Q= 112)Q(J~_~

QE
(53a)



General theory of sandwich plates with dissimilar facings 173

(53b)

(53c)

(53d-g)

(54)

and 00"22 is the critical stress in the upper facing. The formula (52) gives two values,
p+ and p_, according to the sign preceding the radical. The former, P+, corresponds to
modes which are nearly symmetric with respect to the middle surface, i.e. W 3 > w3 or
w3 = 0 if y = 1; the latter p_, is largely antisymmetric, i.e. w3 > W 3 or W 3 = 0 if y = 1.
When y = 1, equation (52) reduces to the result obtained by Tu [15].

For sufficiently small cxml equation (52) gives

. (cxm~Y[y 1 2 21
p- = 1+y 1+y + 12(Qa +Yta )J'

which is the Euler buckling load; it is also exact for all cxml if E = G = 00.

For large cx~ the formula gives

(CX Xf ~ a
2

a
2J

P± == T01± l)T+(I+ I)T ' (55)

which is the buckling load for the top (+) or bottom (-) facing acting independently.

10

'I =1/3

a~
m

Y~2/3

p-,----------,
'1=1

/'---~J = 1/12

/ ~
1

1
1

/

-,
10

10,..:.'h--f£1'-rrr--..,--,--,---,,-rr,,-----r.L....,......T""""T-r-r-r-rr---,---,---,
10-1

p

FIG. 3. Buckling under axial load.

3
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(56a, b)

The factor (1 +15)-1 is the shear correction to the Euler load when the facings are
effectively membranes.

The formula (52) can be used confidently for quasi-Euler buckling of thin plates.
However, thick plates may buckle in nonsinusoidal modes at lower loads [14]. Consider
an example in which

a _I
Q - 20'

QE = 100
E '

E

G
2,

Plots of P± versus (Xm1 are shown in Fig. 3. In this instance the curves for the symmetric
modes (p +) lie entirely above those of the antisymmetric modes so that the former do
not concern us. With l' = 1 the curve of p_ versus nl is redrawn in Fig. 4 for m = 1,2, ...
From that figure it appears that the buckling load is practically constant in the range
A to B. However, this implies that a short plate, say nl = 6, buckles as readily as a much
longer plate, say nl = 0·4. This is unlikely. Instead we anticipate a transition from the
Euler buckling to nonsinusoidal antisymmetric modes as nl increases. According to
Goodier and Hsu [14} these modes involve wrinkling near the ends while the central
~o~ion remains nearly Jjndeformed. Their work indicates that the buckling load can be

~~lgrlificantly lower (abobt one half) in this range. Then the actual curve will lie below
.line AB of Fig. 4; ffiis is indicated by the shaded region.

(2) Pure bending
If the prebuckled state is pure bending in the direction of 82 only, then

where Y is the bending couple and

(1 +1')Y

l Q...1.QI11'(l +sf
*fi22 = 0,

1+1'( 2 2·
S = -1-2- oa + 1a y).y - -

If the pure bending state is replaced by the condition illustrated in Fig. 2, then s = 0.
Accordingly, the results apply as well to the condition of Fig. 2 with the understanding
that the applied couple is Y/(l + s) and the critical stresses must be reduced proportion-

ately. * * .
With the above values for fi22 and fi22, equations (37a, b, c) yIeld three homogeneous

differential equations much like (47a, b, c). We take the end conditions of (48a, b), (49a, b)
and (50); they are illustrated in Fig. 2. As before we have solutions given by (51a, b, c).
Substituting them into the differential equations we obtain three linear homogeneous
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10..1

3
)' = 1

1O-..:.)+-r-T+-,---rT----,---.--.-~1~1~I~II~-~--'-~I~I~I~I~I~I~I--~-~

10-1 1 10

FIG. 4. Axial buckling load ys. thickness parameter.
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p

I
1()'

P:t
"I =1/3

)' =213
)' =1

P..
"1=113

J= 2/3
J= 1

-'- -'-------'----l'---l'-L...L..L.L'L.I__.----1- , I , I , I 1~-l_-L...J---'-_LJ...L1

10 10'

FIG. 5. Buckling under a bending couple.
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(58)

(

1(122 0(122)P = (1_1'[2) --_ .. _--- ,
[E QE

1(122 denote the stresses at the uppermost and lowermost points of the

algebraic equations; the requirement for a nontrivial solution yields a formula for the
buckling load,

1( oa 1
a) -2~(I+Y\ 2 2

P± = 4: 1+ 2+ 2; (am}.) ~ r;y;<Qa -Yla )

il j{(l+Y)[1 2 2 4q J+K
m
± -)'- 3(Qa +Yla )+ (a

m
K

m
)4 •

~(l +}) 2 2 1J il
2

. L! 12y (Qa +ha )+ K
m

+ K;,

+ (1 +Y)il
2
(Qa

2
+ha2)}]

12y Km

wherein

and O(j22 and
plate.-

For small values of a)~ the formula gives

1( oa 1
a)J{(I+Y)[(I+Y) 2 2 J}P± = ±2' 1+ 2+2 17'-. 12y (Qa +Y1a )+ 1 q .

Here the (+) and (-) signs merely indicate opposite directions of the bending couple.
Notice that this value does not depend on 1 Moreover, for long wave lengths (n2 <% 1)
we anticipate that the critical stress will be unaffected by the end conditions.

p

rI).::

FIG. 6. Buckling couple versus thickness parameter.
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For large values of IXmX the formula gives

P+ == ~(1 +Qa + !a)(IX~f(1 +Y)[(1 ± l)oa2 -(1+ I)yIa2
].

- 24 2 2 y - -

The two values, P+ and p_, correspond to the independent buckling of the upper and
lower facings under axial compression.

Buckling under conditions of pure bending has fundamental importance as a
mechanism of local failure in thin sandwich plates and shells. An estimate of the critical
bending stress can be obtained from a plot of p versus IX~ as shown in Fig. 5. For purposes
of illustration, plots of p versus nX are shown in Fig. 6 for the case Y= 1 and m = 1,2, ...
From Fig. 6 it is evident that the load on a thin plate cannot exceed that of line AB.
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ZusammeDfassung-Die Gleichungen zur Erfassung grosser Durchbiegungen an Schichtplatten mit schwacher
Flillung werden abgeleitet und in invarianter Form dargestellt. Die allgemeinen Gleichungen umfassen sowohl
die Biegesteifigkeit der Aussenschichten, als auch die Querdehnung des Kernes. Die Gleichungen flir Ausbeulen
und kleine Durchbiegungen erhlilt man als Spezialfalle. In einem Beispiel wird die Beullast dilchbestimmt
und damit die Anwendung der Gleichungen erlliutert.

A6cTpaKT-BbIBOAlITCll ypaBHeHHlI AJlI! 60JIblllHX nporM6oB B CJIOHCTblX ITJIHTaX co CJIa6blM BHyTpeHHHM
CJIOeM; ypaBHeHHlI .llaIOTCI! B HHBapHaHTHoH tPopMe. 06wee ypaBHeHHe BKJIIO'laeT cOnpOTHBJleHHe HJrlt6y
BHelllHHX nosepxHOCTeil. H nOnepe'lHOe paCIllMpeHHe Cep.llLIeBMHbl. KaK CneLIHaJIbHble CJly'laH AalOTClI
ypaBHeHHlI .llJlll BbmY'lHBaHHlI H MaJlblX nporH6oB. HJlJlIOCTpHpyeTclI Ha npHMepe npHMeHeHHe )THX
ypaBHeHHH AJIl1 npe.llCKaJaHHlI KpHTH'leCKHX HarpyJOK.


